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ABSTRACT: The perception of odor and flavor of food is a complicated physiological and psychological process that cannot be
explained by simple models. Quantitative descriptive analysis is a technique used to describe sensory features. Nevertheless, the
availability of a number of instrumental techniques has opened up the possibility to calibrate the sensory perception. In this frame,
we have tested the potentiality of nuclear magnetic resonance spectroscopy as a predictive tool to measure sensory descriptors. In
particular, we have used an NMR metabolomic approach that allowed us to differentiate the analyzed samples based on their
chemical composition. We were able to correlate the NMR metabolomic fingerprints recorded for canned tomato samples to the
sensory descriptors bitterness, sweetness, sourness, saltiness, tomato and metal taste, redness, and density, suggesting that NMR
might be a very useful tool for the characterization of sensory features of tomatoes.
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’ INTRODUCTION

It is crucial to know consumers' expectations, habits, and
preferences to ensure product success on themarket. Brand, label
information (such as geographic origin, technology, etc.), price,
packaging, factory image, product concept, and effective com-
munication are all critical factors. However, when the consumer
decides whether to buy the product again or not, success is tightly
connected to the products' features.

It is therefore extremely important to understand how much
consumers' preferences are driven by differences in sensory features
between products. Traditional consumer research helps determine
acceptable versus unacceptable. It is helpful when an overall, syn-
thetic understanding of the product's acceptance is needed. How-
ever, it is not of any help when an explanation, in terms of sensory
descriptors, is needed to provide R&D with technical information
useful to enhance product features. Such information can only be
provided through analytical products evaluation, of which consu-
mers are not capable.

A detailed sensory description, in fact, requires the ability to
decompose each sensory feature, requires selective attention, and
thus requires people specifically trained to the application of
sensory analysis (quantitative descriptive analysis, QDA).1 Sen-
sory analysis is a discipline through which the sensory analyst
evokes, measures, analyzes, and interprets human responses to
stimuli as perceived through the senses. Human sensory tests are
regularly employed in the food and beverages industries, and they
are sometimes integrated by a number of techniques, including

the electronic nose2 and the electronic tongue.2 The most
common types of sensors used are based on electrochemical
techniques, such as potentiometry and voltammetry.3�5 Other
sensing methods include optical6 and acoustic techniques.7 Further-
more, techniques like mass spectrometry (MS)8 and gas chromatog-
raphy (GC)9 have also been used. 1H nuclear magnetic resonance
(NMR) spectroscopy also has been used to investigate the taste of
wine.10Here,we investigate the utility of 1HNMRas a tool to analyze
the taste of canned tomato without any other chemical analysis.

’MATERIALS AND METHODS

Materials. Eighteen canned tomato products of different brands
were purchased in different markets in the city of Napoli (Italy) (Table
S1 in the Supporting Information).
Sensory Assessment. A panel of trained 12 assessors (six females

and six males) was selected based on the ability to recognize, describe,
and quantify basic tastes, odors, and texture properties. The panel
developed a specific profile protocol for QDA containing 14 descriptors:
redness, synaeresis, dimension, residual peel, consistency, density, toma-
to flavor, saltiness, sourness, bitterness, sweetness, tomato taste, cooked
taste, and metal taste. Descriptors were evaluated on a continuous,
unlabeled, 0�10 intensity scale and then turned into numeric variables
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(a number between 0 and 10). Three replicates per sample were
performed, to minimize random errors (each subsequent replicate after
1 week from the previous one). The 18 samples were presented blinded
in a flat plastic plate uncooked and at a controlled temperature (30 �C).
A maximum of three samples were presented during each session
according a balanced rotation plan.
Sample Preparation for 1H NMR Analysis. Each sample was

blended and centrifuged at 2200g for 30 min. Four aliquots (500 μL) of
supernatant of each sample was diluted with 100 μL of D2O and
analyzed independently. No buffer was used.
Chemicals and Reagents. Deuterium oxide (D2O, 99.9 atom %)

was purchased from Cambridge Isotope Laboratories, Inc.
NMR Spectrometry. 1H NMR spectra were acquired at 25 �Cwith

a 700MHzVarianUnity Inova spectrometer using a 5mm 1H{13C/15N}
triple resonance probe. The 1H NMR measurements were carried out
with 128 transients and 16K complex data point. The recycle timewas set
to 5 s, and a 45� pulse angle was used. The water signal was suppressed
using presaturation.
NMR Data Reduction and Processing. The spectra were pro-

cessed using iNMR (www.inmr.net). An exponential line-broadening of
0.5 Hz was applied to the free-induction decay prior to Fourier transforma-
tion. All spectra were referenced relative to external sodium 2,2-dimethyl-2-
silapentane-5-sulfonate (DSS), phased, and baseline corrected. Four ali-
quots of each product were studied by one-dimensional 1H NMR. In total,
72 spectrawere acquired. The spectrawere aligned by correlation optimized
warping11 using mP = 50 and nP = 2. Data reduction was accomplished by
dividing the spectrum into 0.01 ppm regions (bins) over which the signal
was integrated to obtain the signal intensity. The region around the residual

water signal (5.0�4.7 ppm) was removed in order not to compromise the
analysis. The high- and low-field ends of the spectrum, containing no signal,
were also removed (i.e., leaving data between9.5 and 0.5 ppm). At the end, a
total of 870 variables were analyzed for each spectrum. The integrals were
normalized to a total intensity to suppress trivial separation based on
variations in the amount of sample.

The dendrograms describing the sensory analysis were based on
unscaled sensory data. The NMR-based dendrograms were based on
PLS-DA scores of VAST scaled12 NMR data calculated using Simca-P
11.5 (Umetrics, Ume�a, Sweden) as input. In VAST scaling,12 each region/
bin is divided by the average standard deviation of the integral of that region
within each product. This scaling reduces the weight of random variations
between “identical” samples, and the analysis is not biased toward com-
pounds present at high concentrations. The number of axes for the PLS-DA
model was determined by leave one out cross-validation, where all of the
samples from each of the 18 products were left out for one product at a time
to determine the quality of the model. Themodel used was estimated using
all 18 products. Hierarchical cluster analysis (HCA) was then carried out
using complete linkages in R (http://www.r-project.org) by using the
Euclidean distance between the PLS scores for each product.

Principal component analysis (PCA) was carried out on unscaled sensory
data. VAST-scaled12 NMR data were used. The PCA was performed using
Simca-P 11.5 (Umetrics). The number of principal components (PCs) was
determined by leave one out cross-validation as described above. To test
which PCs that varied significantly between products, the PC scores for
the NMR data were subjected to one-way analysis of variance using
sequential Bonferroni correction for multiple testing (significance
level, 0.05). The fact that the variations between the samples from the

Figure 1. Spider web plot of the sensory descriptors for the 18 tested samples. The mean QDA parameters are listed in Table S2 in the Supporting
Information.
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same can were taken as the variation within the product might result in
an overestimation of the significance. Standard errors (SEs) were
calculated as SE = SD/N1/2 where SD is the standard deviation and N
is the number of samples from that product.

Orthogonal projection to latent structures, OPLS, separates the
variance in x correlated with y (y-predictive) with the orthogonal
(noncorrelated; y-orthogonal) variance.13 In contrast to regular PLS, a
single y will result in only one predictive component. OPLS was carried
out using each sensory descriptor as the y-variable. Data were scaled to
obtain unit variance and then centered. OPLS was performed using
Simca-P 12.0 (Umetrics). Cross-validation was obtained as described
above. Markers for the sensory descriptors were identified from the
NMR signals that showed a strong correlation (R2 > 0.5) with the OPLS
predictive scores for the sensory descriptors.

’RESULTS AND DISCUSSION

Sensory Analysis.QDAmean results are reported in Figure 1.
To group products sharing similar sensory features, HCA was
performed on QDA means. The resulting dendrogram is shown
in Figure 2A. Three main groups were identified, consisting
of products 14, 13, 8, and 2 (group 1A); products 5, 18, 16, 12,
15, 9, and 10 (group 2A); and products 11, 17, 6, 1, 7, 4, and 3
(group 3A).
PCA was also performed on the same data set (Figure 3).

Two PCs accounting for 60% of the variation were identified.
A plot of their scores (Figure 3A) shows the positioning of the
products according to their sensory attributes and allowed the
identification of the most important sensory descriptors for
products differentiation. This analysis indicates that the groups
identified by the HCA share the same features and that there is
no strong separation between the different groups identified.
According to the loading plot (Figure 3B), the transition from
the upper-left corner to the bottom-right corner of the map
shows the simultaneous decrease of the bitterness and metal
taste and increase of the sweetness and saltiness. Tomato flavor,
saltiness, and tomato tastes are positioned on the bottom-right
side of the map. Redness, consistency, dimension, density,
residual peel, sourness, and cooked taste are positioned in the
upper-right quadrant. In general, products belonging to group
1A are characterized by sweetness, by tomato taste and salti-
ness, and by tomato flavor. Group 2A is instead characterized by a
more marked redness and sourness. On the other hand, group 3A
is characterized by bitterness and metal taste, having a light

redness. However, none of the descriptors shows a high
correlation (|R| > 0.5) with the model (Figure 3B).
To characterize the correlations between different sensory

descriptors, the correlation coefficients were calculated (Table 1).

Figure 2. Dendrograms showing the similarities between products based on (A) QDA and (B) NMR. Products falling within the same group in the
NMR classification are indicated with the same color.

Figure 3. Score (A) and loading (B) plots of the PCA performed on
sensory data. Products are colored according to NMR HCA analysis
in Figure 2B. Note that none of the sensory descriptors are well
described by this PCA model (|R| > 0.5 for all descriptors).
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We can see, for example, a strong negative correlation of sweetness
with bitterness but not with metal taste or sourness, as suggested by
the loadings plot (Figure 3B).
NMR Analysis. The same products tested in the QDA were

analyzed by NMR. The superimposition of two representative 1H
NMR spectra is reported in Figure 4. It should be noticed that for
each product, all of the NMR samples were taken from the same
can. The data might thus underestimate the spread of the chemical
properties within each product. Analogously to the HCA per-
formed on sensory data, theHCA analysis performed on theNMR
data revealed threemain groups (Figure 2B): 14 and 2 (group 1B);
13, 10, 9, 18, and 16 (group 2B); and 15, 17, 5, 11, 6, 1, 4, 3, 7, 8,
and 12 (group 3B). Despite the fact that the two HCAs refer to
data collected by very different analytical techniques, it can be seen
that there is a good global agreement between the different
measurements: All products of group 1B (products 2 and 14)
are also present in group 1A, all products except one in group 2B
(products 9, 10, 16, and 18) are also present in group 2A, and all
products in group 3A (products 1, 4, 6, 7, 11, and 17) are also
present in group 3B.
PCA has also been performed on the NMR data set. Fourteen

PCs were identified, of which PC1, PC2, and PC3 vary signifi-
cantly between the different products. These three PCs account
for 57% of the variation. The general distribution of the products
in the score plots (Figure 5A,B) in a way recall the one observed
in the sensory data set (Figure 3A). For example, considering the
PC1�PC2 plot, products 3 and 4 are mapped close to each other
and, at the same time, far away from the products 9, 10, 16, 15,
and 18. Similarly, these latter samples are far way from products 2
and 14. Finally, the products 1, 6, 7, 8, 12, and 17, whichwere placed
in the very center of the plot of the sensory data (Figure 3A), are
placed in the center of NMR PC1�PC2 plot as well. As judged
from the loading plots (Figure 5C�E), the first PC describes the
distribution of the samples based on their sweetness. In fact,
negative values can be observed for signals belonging to sugars
like saccharose and α- and β-D-glucose. At the same time, posi-
tive correlations can be observed for signals belonging to bitter
amino acids like tyrosine, phenylalanine, tryptophane, and iso-
leucine (see Chemical Signatures of Sensory Descriptors). The
noisy look of the second PC describes the formation of sharper
NMR signals due to a decrease in viscosity. The third PC seems
instead related to an increase of saccharose, isoleucine, and acetate
and a decrease of tyrosine, α-D-glucose, malate, and glutamate.

The loading plots also contain a number of signals that could not
be assigned unambiguously.
Prediction of Sensory Descriptors. Although it is encoura-

ging that there are similarities in the structures of the sensory and
NMR data, the important question is how well the sensory
descriptors can be predicted by NMR. To resolve that question,
we made predictive models for the different sensory descriptors
using orthogonal-projection to latent structures, OPLS.13 Using
this protocol, we were able to get good predictions [Q2(cum) >
0.5] for bitterness, redness, density, and metal and tomato taste
(Table 2). After inspection of the remaining models and identi-
fication of outliers in those, we were able to get goodmodels for all
but two brands for saltiness, sweetness, and sourness (Table 2). In
five cases out of six, the removed products showed extreme values
for saltiness (2 of 2), sweetness (2 of 2), and sourness (1 of 2).
It thus seems that these extra strong features depend on other
factors than those under more normal conditions. The remaining

Table 1. Correlation Coefficients (|R| > 0.5) between Sensory Descriptorsa

redness dimension synaeresis density tomato flavor saltiness sourness sweetness bitterness tomato taste cooked taste consistency

redness 0.60 0.76 0.56 0.55

dimension 0.60 0.55 0.51 0.87

synaeresis �0.60

density 0.76 0.55 �0.60 0.71 0.57 0.59 0.56

tomato flavor 0.71 0.52 0.86

saltiness 0.57 0.52 0.58 �0.52 0.57 0.71

sourness 0.54

sweetness 0.58 �0.69 0.52

bitterness �0.52 0.54 �0.69

tomato taste 0.59 0.86 0.57 0.52 0.58

cooked taste 0.56 0.51 0.71

consistency 0.55 0.87 0.56 0.58
a Sensory descriptors showing |R| < 0.5 to all other sensory descriptors are excluded.

Figure 4. Annotated 1H NMR spectra of two typical canned tomato
samples. Product 2 (solid black line) is characterized by the presence of
saccharose (see signals at 5.41 ppm) and a low viscosity, while product
15 (dashed gray line) is characterized by the absence of saccharose and a
high viscosity. Note that the y-axis scale of the upper panel is increased
40� compared to the lower.
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descriptors were related to the physical rather than chemical
properties of the products.
Chemical Signatures of Sensory Descriptors.To determine

the chemical components responsible for a given sensory de-
scriptor, we have looked for all possible correlations between the
NMR signals and the analyzed sensory descriptors using OPLS
models. Specifically, the origin of signals displaying correlation
above R2 > 0.5 with the OPLS scores for the sensory descriptors
with a Q2 > 0.5 was identified. In this procedure, a multitude of

chemical components were identified for several of the sensory
descriptors14 (see also Table 3).
It was possible to identify only very few compounds that have a

relationship with sweetness. Particularly, sweet perception was
positively correlated with saccharose (5.41 ppm) in spite of its
low concentration, whereas it was negatively correlated with
tyrosine (H-α 3.94 ppm), which is a known bitter amino acid. No
correlation was found with citrate, while a negative correlation
with the malate signal at 4.29 ppm was found. This is an interesting
result since malate and citrate seem to have very similar sensory
properties (see below).15 The characteristic sweet�sour taste of
tomato and its overall flavor intensity are mainly due to reducing
sugars, free acids, and free amino acids, minerals, and volatile
substances. Overall, the character and intensity of taste are greatly
affected by the salts present and by the buffer effect of the various
cations and anions. About 50% of the dry matter in tomatoes is
made of sugars, primarily glucose and fructose. There is frequently
saccharose as well, but its quantity rarely exceeds 0.1% of the fresh
mass.16,17 It is interesting to note that the sensation of sweetness
cannot solely be explained by the sugar content. In fact, Jones and
Scott did not find a close correlation between sugar content and
sweetness.18 Similarly, Watada and Aulenbach did not find correla-
tion between sweetness and dry matter content either.19 All of this
means that other components affect the perceived sweetness.
Interestingly, Stevens and co-workers found a relationship between
the sensation of sweetness and the glucose/citric acid interaction.20

Particularly, they have found that glucose affects sweetness more
than fructosewith high citric acid concentration. Furthermore, when
the sugar concentration is low, citric acid reduces perceived
sweetness, while with high sugar concentration, it increases sweet
perception. It has been estimated that the relative composition in

Figure 5. Score (A and B) and loading (C�E) plots of the PCA
performed on NMR data. Panels A and B show the PC1�PC2 and
PC1�PC3 score plots, and panels C�E show the PC1�PC3 loadings.
Products are colored according to NMR HCA analysis in Figure 1B.
Error bars correspond to one SE (SE = SD/N1/2).

Table 2. Description and Statistical Summary of the OPLS
Models Constructed Based on NMR Data

variable Aa Nb R2X(cum)c R2Y(cum)c Q2(cum)d

bitterness 7 66 0.70 0.99 0.87e

redness 5 66 0.65 0.98 0.86e

density 2 66 0.37 0.80 0.68e

metal taste 1 66 0.31 0.85 0.67e

tomato taste 2 66 0.42 0.87 0.58e

saltiness 1 66 0.27 0.71 0.33

products 5 and 18 excluded 5 58 0.66 0.99 0.91e

sweetness 2 66 0.40 0.84 0.30

products 2 and 3 excluded 7 58 0.72 0.99 0.78e

tomato flavor 2 66 0.34 0.74 0.23

residual peel 1 66 0.30 0.56 0.14

consistensy 2 66 0.43 0.73 0.07

2 62 0.37 0.79 0.26

sourness 0 66 0.23 0.31 0.04

products 3 and 10 excluded 5 58 0.65 0.96 0.83e

syneraesis 1 66 0.29 0.59 0.02

dimension 0 66 0.21 0.36 0.02

cooked taste 0 66 0.21 0.32 �0.01
aA number of orthogonal components. bNumber of samples included in
the model. c R2X(cum) and R2Y(cum) = the cumulated fraction of the
variance in the parameter explained by the model. d Q2Y(cum) = the
cumulative predicted fraction of the variation of the parameter as
determined by cross-validation. e Q2Y(cum) values above 0.5 are con-
sidered as good predictors.
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glucose, fructose, and citric acid can explain about 80% of the
variation in sweetness.20

In contrast to sweetness, bitter taste was negatively correlated
with glucose and saccharose signals and positively correlated with
a number of bitter amino acids21 like isoleucine (H-β, H-γ1,
H-γ2, and Me-γ at 1.98, 1.46, 1.26, and 0.93 ppm, respectively),
tryptophan (H4, H5, and H6 at 7.75, 7.17, and 7.29 ppm,
respectively), tyrosine (H3/H5 and H2/H6 at 6.90 and 7.18
ppm, respectively), valine (H-β at 2.53 ppm), and phenylalanine
(H3/H5 and H2/H6 at 7.40 and 7.30 ppm, respectively). The
correlation with glucose suggests that even if glucose did not
correlate with sweet taste, it has a strong masking effect on the
bitter taste. Sweetness and bitterness show a relatively strong
anticorrelation (R = �0.69; Table 2). Interestingly, bitter taste
was also positively correlated with glutamate signals (H-β1,
H-β2, and H-γ at 2.52, 1.62, and 32 ppm, respectively), acetate
(1.91 ppm), andmalate (2.37 and 2.66 ppm), all compounds that
do not possess a bitter taste themselves. However, the taste-
enhancing effect of the glutamic acid, one of the most abundant
amino acid in tomato, was proven,22�24 and we cannot exclude a
similar effect also for acetate and malate.
The sour taste of tomato can be ascribed mainly to the organic

acids, rather than to the hydrogen ion concentration. Organic
acids form more than 10% of the dry content of tomatoes.25,26

The two main acidic components are citric and malic acid, where
malic acid is more sour than citric acid even if present in lower
concentration. In our case, we found that sourness is positively
correlated with both of these components. Moreover, it is known
that sourness is also affected by the presence of free amino
acids.27 We found positive correlations with amino acids having
taste-enhancing properties like glutamate, glutamine, aspartate,
and asparagine and with amino acids having a bitter taste like
tryptophan, tyrosine, phenylalanine, valine, and isoleucine. Inter-
estingly, sour taste was negatively correlated to the presence of
α- and β-D-glucose. All of these data strongly suggest that sour taste
is closely correlated to bitter taste. As shown in Table 2, the
correlation coefficient between the two was 0.54 in this study.
Furthermore, tomato taste and saltiness were all positively

correlated (Table 2) and were negatively correlated to isoleucine
(H-γ and Me-γ at 1.26 and 0.93 ppm, respectively) and malate
(4.29 ppm). Metal taste, instead, had positive correlations with

bitter amino acids like isoleucine (Hγ and Meγ at 1.26 and 0.93
ppm, respectively), tyrosine (H3/H5 and H2/H6 at 6.90 and
7.18 ppm), and phenylalanine (H3/H5 and H2/H6 at 7.40 and
7.30 ppm, respectively). On the other hand, a negative correla-
tion was evident with the signal belonging to α- and β-D-glucose
(3.82 and 3.49 ppm) and saccharose (5.41 ppm). Interestingly,
metal taste was also positively correlated to the malate signal
at 4.28 ppm. Metal taste did not show any correlations above
|R| = 0.5 with other sensory descriptors in this study.
Very surprisingly, redness was positively correlated with the

presence of tryptophan (H4, H5, and H6 at 7.75, 7.17, and 7.29
ppm, respectively) and tyrosine (H3/H5 at 6.90 andH-βs at 3.06
and 3.18 ppm). At this stage, we cannot explain this observation.
Finally, a number of signals in the region between 4.30 and 4.60

ppm and at 4.03 ppm display negative correlations with density.
For the time being, we are not able to unambiguously assign these
signals, even if their chemical shifts strongly suggest that they
could be attributed to sugars.
In conclusion, the perception of odor and flavor of food is a

complicated physiological and psychological process that cannot
be explained by simple models. This is because hundreds of com-
pounds simultaneously influence the human olfactory receptors
and because the physiological response is far from linear, and the
overall effects are not just the superimposition of the effect of
single stimuli.
Sensory analysis, and, in particular, the QDA, continues to be

an irreplaceable technique to describe sensory features. Never-
theless, the availability of a number of instrumental techniques
has opened up the possibility to calibrate the sensory perception.
Thus, the tandem approach that uses instrumental and classical
sensory analysis seems to be a valuable strategy. Unfortunately,
the more usual artificial tongue/nose are used to determine very
specific components of the analyzed food. Furthermore, not all
instrumental techniques are able to analyze directly the genuine
mixture interacting with our sense without any extraction/con-
centration procedures. For example, MS and GC require volati-
lization of the analyzed compounds that very often is obtained
with a chemical derivatization. In this frame, we have tried to
test the potentiality of NMR spectroscopy as a predictive tool to
measure sensory descriptors, without performing any comple-
mentary chemical analyses. In particular, we have used an NMR

Table 3. Correlation between Chemical Substances and OPLS Models for Sensory Descriptorsa

redness metal taste saltiness sourness sweetness bitterness tomato taste

acetate (1.91) +

aspartate (2.68, 2.80) + +

asparagine (2.87, 2.95) +

citrate (2.53, 2.66) +

glucose (3.49, 3.82) � � �
glutamate (2.05, 2.16, 2.32) + +

glutamine (2.14, 2.45) +

isoleucine (0.93, 1.26, 1.46, 1.98) + � + + �
malate (2.37, 2.66, 4.29) + � + � + �
phenylalanine (7.30, 7.40) + + +

saccharose (5.41) � + �
tryptophan (7.17, 7.29, 7.75) + + +

tyrosine (3.94, 6.90, 7.18) + + + � +

valine (2.53) + +
a + and � signs indicate positive and negative correlations, respectively. Chemical shift values (ppm) of the used signal are reported in brackets.
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metabolomic approach since it is rapid, sensitive, and relatively
inexpensive. This approach in combination with multivariate
analysis has an advantage over the ordinary sensory test, since it
offers more reliable results for the classification and determina-
tion of some aspect of the sensory attribute of the tomato. The
metabolomic fingerprints recorded for all tested canned tomato
samples allowed us to differentiate all analyzed samples based on
their chemical composition.
Interestingly, the same classification and characterization have

been reached independently from the QDA analysis. In parti-
cular, a number of sensory descriptors can be easily predicted
from the NMR data: bitterness, sweetness, sourness, saltiness,
tomato and metal taste, redness, and density. The presence of a
number of bitter amino acids like isoleucine, tryptophan, tyrosine,
phenylalanine, and valine is correlated with bitterness and surpris-
ingly to sourness. Other amino acids seem also to have a crucial role
as taste enhancers like glutamate, glutamine, aspartate, and aspar-
agine, which amplify the bitter and the sour taste, as well as the
cooked taste. The sugar content is obviously correlated with
sweetness, even if their correlation is not so straightforward. Finally,
other components like citrate, malate, formiate, and acetate are
correlated with sourness. Very interestingly, citrate and particularly
malate seem to be crucial in the defining the taste of tomato. In
general, we have noted that the same substances could be involved in
two (or more) features; these could be counteractive in the sense
that the increase in one leaves less room for the other features; they
could be also affected by a third feature, etc. One drawback with the
methodology presented here is that only the soluble fraction of the
product is measured. In future studies, this can be avoided by using
HR-MAS NMRwhere also the semisolid fractions contribute to the
NMR spectrum. However, the results obtained suggest that NMR
could be a very useful tool for the characterization of some sensory
features of tomato. To evaluate the applicability of this methodology
to other kinds of food, a number of experiments are currently
undertaken in our laboratories.
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